Part Number Hot Search : 
TC297 9568E MD1213 CENTRAL HC157 PMV185XN 01502 54000
Product Description
Full Text Search
 

To Download BH7659FS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TECHNICAL NOTE
High-performance Video Signal Switchers
Broadband Triple Circuits Video Signal Switchers
BA7657S/F, BH7659FS
Description The BA7657S, BA7657F, and BH7659FS are ICs that have been developed for use in PC monitors, HDTVs (high definition televisions), and other high-resolution display devices. In addition to their wide-range switching circuits for RGB signals, HD signals, and VD signals, the BA7657S and BA7657F feature a separation (BUNRI) circuit for the synchronization signal that 2 is superposed on the G signal, while the BH7659FS features an on-chip switch for I C bus signals (SDA and SCL). These ICs can be used to simplify the input block configuration in advanced display devices. Features 1) Operates on 5 V single power supply. 2) Built-in wide-range RGB signal switches.
(BA7657S/F: fc = 230 MHz) (BH7659FS: fc = 250 MHz) 3) Built-in switching circuit for HD signal and VD signal. 4) Built-in separation (BUNRI) circuit for synchronization signal superposed on G signal. 2 5) Built-in switch for I C bus signals (SDA and SCL). (BH7659FS) 6) Built-in power saving function. (BH7659FS)
(BA7657S/F)
Use PC monitors, Plasma displays, LCD monitors, and Other devices that use wide-range RGB signal switching. Lineup Parameter Circuit current (mA) Circuit current during low-power mode (mA) RGB signal SW block frequency characteristics (MHz) Synchronization signal SW block circuit configuration Synchronization signal separation circuit Package BA7657S/F 35 230 2 digital switching circuits SDIP24/SOP24 BH7659FS 25 14 250 4 CMOS analog switching circuits SSOP-A32
Absolute Maximum RatingsTa=25 Parameter Symbol Limits Unit Supply voltage 8.0 V VCC BA7657S 1200 Power BA7657F 550 Pd mW dissipation BH7659FS 800 Operating temperature Topr -25+75 Storage temperature Tstg -55+125 Deratings is done at 12mW/ (BA7657S), 5.5mW/ (BA7657F), 8mW/ (BA7659FS) above Ta=25. Operating RangeTa=25 Parameter Symbol Supply voltage VCC
Min. Typ. Max. Unit 4.5 5.0 5.5 V This product is not designed for protection against radioactive rays. Aug.2008
Electrical characteristics (1/2) BA7657S/F Unless otherwise noted, Ta=25, Vcc=5.0V Parameter Circuit current Analog SW block Maximum output level Voltage gain Input pin voltage gain differential Inter block voltage gain differential Input pin cross talk1 Interblock crosstalk1 Digital SW block "H" "L" "H" "L" level input voltage level input voltage level input current level input current VIH VIL IIH IIL TR TF TRD TFD VOH VOL IOH IOL 1.8 80 -3 3.0 -400 5 100 -1 30 30 50 30 3.7 0.2 1.2 130 50 50 80 50 0.4 V V A A ns ns ns ns V V A mA VIN=5.0V VIN=0V Vom GV GVl GVB CTI1 CTB1 2.8 -1.0 -0.2 -0.2 -0.5 0 0 -50 -50 0 0.2 0.2 -40 -40 VP-P dB dB dB dB dB f=1kHz f=1MHz,VIN=1VP-P f=1MHz,VIN=1VP-P f=1MHz,VIN=1VP-P f=10MHz,VIN=1VP-P f=10MHz,VIN=1VP-P Symbol ICC Min. 20 Typ. 35 Max. 50 Unit mA Conditions
Rise time Fall time Rise delay time Fall delay time "H" "L" "H" "L" level output voltage level output voltage level output current level output current
Synchronization signal separation block Minimum SYNC separation level "H" "L" "L" level output voltage level output voltage level output current VSMin. VOH VOL IOL TR TF TRD TFD -50 4.5 2 5.0 0.2 80 30 100 100 50 0.5 130 80 150 150 mVP-P V V mA ns ns ns ns
Rise time Fall time Rise delay time Fall delay time Control block "H" "L" "H" "L" level input voltage level input voltage level input current level input current
VIH VIL IIH IIL
1.8 80 -3
100 -1
1.2 130
V V A A
2/16
Electrical characteristics (2/2) BA7657S/F Guaranteed design parameters Parameter Analog SW block Input pin cross talk 2 Interblock cross talk 2 Frequency characteristic Input pin frequency differential Interblock frequency characteristic differential SYNC separation block SYNC separation frequency SYNC separation pulse width 1 SYNC separation pulse width 2 SYNC separation pulse width 3 SYNC separation level 1 SYNC separation level 2 SYNC separation level 3 fH-R pwH1 pwH2 pwH3 VS1 VS2 VS3 200 3.0 0.5 0.3 300 100 60 kHz S S S S S S Input waveform 1 Input waveform 2 fH=20kHz Input waveform 2 fH=100kHz Input waveform 2 fH=200kHz Input waveform 3 fH=20kHz Input waveform 3 fH=100kHz Input waveform 3 fH=200kHz CTI2 CTB2 Gf Gfl GfB -6 -1 -1 -30 -30 -3 0 0 -15 -15 -1 +1 +1 dB dB dB dB dB f=230kHz, VIN=1VP-P f=230MHz,VIN=1VP-P f=1MHz/230MHz, VIN=1VP-P f=1MHz/100MHz, VIN=1VP-P f=1MHz/100MHz, VIN=1VP-P Symbol Min. Typ. Unless otherwise noted, Ta=25, Vcc=5.0V Max. Unit Conditions
Input waveform 1 VS and pwH are variable. VS and pwH are inter-related. See the characteristics diagram. 2 VS = 130 mW and pwH are variable. 3 pwH = 1 s and VS are variable.
Period of horizontal synchronization signal DUTY 25% (1H) Vr=0.7V Vs=130mV pwH=1s
3/16
Block diagram
BA7657S/F
Fig.1
4/16
Pin descriptions (1/2) BA7657S/F Pin No. 1 3 5 7 9 11 Pin name Red1 Input
Vc c
Reference potential
Equivalent circuit
Function
Green1 Input Blue1 Input Red2 Input Green2 Input Blue2 Input
V cc
3.7V when selected 0V when not selected
1 00
6.8k
21k
2-channel switching of R, G, and B signals. Select between: CTL: H input1 CTL: L input2
1k
15 19 21
Blue output Green output Red output 2.0V
50
400
5mA
Output pins for RGB signals. Insert resistance from 100 to 300 near the pins to suppress f peaks at high frequencies.
Vc c
35k
H1.8V 16 Control
1k
L1.2V
50k 15k
CTL pins Select between: CTL: H input1 CTL: L input2
12 13 23 24
VD1 input VD2 input HD2 input HD1 input H1.8V L1.2V 2-channel switching of VD and HD signals. Select between: CTL: H input1 CTL: L input2
14 22
VD output HD output
VOH3.0V VOL10.5V
Output pins for vertical synchronization signal (VD) And horizontal synchronization signal (HD).
5/16
Pin descriptions (2/2) BA7657S/F Pin No. Pin name Reference potential Equivalent circuit Function
18
Composite Video input
2.5V
Input pin for composite signal (Sync on Green).
2
HD Sync Signal detector
This pin is used to detect whether or not the HD signal is being input. When the HD signal is being input, the synchronization signal separation circuit is stopped.
Synchronization signal output pin 17 Composite sync output Synchronization separation is performed for the input signal from pin 18 if the HD signal is not being input. Insert a decoupling capacitor near the pin.
20
VCC
5V
4 6 8 GND 0V Use as large a GND pattern area as possible.
6/16
Description of operations BA7657S/F 1) Analog SW block Two channels of RGB signals can be switched. I/O relations IN1 can be selected when high-level voltage is applied to Input Output the CTL pin, and IN2 can be selected when low level HD VD Sync on Green HD VD Composite Sync voltage is applied. 2) Digital SW block This block switches between two channels of HD and VD synchronization signals. HD and VD synchronization signals are output for IN1 when high-level voltage is applied to the CTL pin, and these signals are output for IN2 when a low-level voltage is applied to the CTL pin. 3) Synchronization signal separation block This block separates composite signals (Sync on Green) and synchronization signals and outputs positive-electrode composite synchronization signals. When an HD signal is being input, the synchronization signal detector operates and stops the synchronization signal separation circuit. A low-level output voltage is used for output. The time at which the synchronization signal separation circuit will be stopped can be set using external time constants for the circuit detection pin.
Application circuit BA7657S/F
Fig.2 7/16
Reference data BA7657S/F
Vcc=5V
BA7657 S/F
Analog SW block Vcc=5V
BA7657S/F
4.5 4 3.5 3 delay(ns) 2.5 2 1.5 1 0.5 0 -100 -50 0 50
Ta
Analog SW block Vcc=5V
100
150
200
Fig.3 Frequency characteristic BA7657S/F
10 9 PULSE WIDTH : pwH [s] 8 7 6 5 4 3 2 1 0 20 40 60 80 100 120 140 160 180 200 FREQUENCY : [kHz]
Fig.4 Interchannel crosstalk BA7657S/F
50 Vcc=6V
Fig.5 Input/output delay time vs. Temperature
CircuitCurrent(mA
Duty25% 50mV 130mV 280mV
40
Vcc=5V
30
Vcc=4V
20
10 -50 0 Ta 50 100
Fig.6 Minimum SYNC separation characteristic
Fig.7 Quiescent current vs. Temperature
8/16
Electrical characteristics BH7659FS Unless otherwise noted, Ta=25, Vcc=5.0V Parameter Entire device Circuit current Circuit current during power save R,G,B video SW Voltage gain Interchannel relative gain Interblock relative gain Output dynamic range C-MOS analog SW On-resistance Interchannel ON resistance differential Interchannel cross talk Transmission delay time Control block "H" level voltage "L" level voltage Symbol ICC IPSV Min. 15 7 Typ. 25 14 Max. 35 22 Unit mA mA Conditions PS="H"
GV GVC GVB VOM RON RON CT tD VH VL
-1.0 -0.5 -0.5 2.6 3.5
-0.5 0 0 200 20 -70 20
0 0.5 0.5 400 40 -55 1.5
dB dB dB VP-P dB ns V V
f=10MHz f=10MHz f=10MHz f=1kHz VIN=2.5V VIN=2.5V f=150kHz RL=100,CL=50pF
Guaranteed design parameters BH7659FS Unless otherwise noted, Ta=25, Vcc=5.0V Parameter R/G/B video SW Frequency characteristics 1 Frequency characteristics 2 Interchannel relative frequency characteristics Interblock relative frequency characteristics Interchannel cross talk 1 Interchannel cross talk 2 Interblock cross talk 1 Interblock cross talk 2 Symbol f1 f2 fC fB CTC1 CTC2 CTB1 CTB2 Min. -3.0 -6.0 -0.5 -0.5 Typ. 0 -3 0 0 -50 -30 -50 -30 Max. +1.0 -1.0 0.5 0.5 -35 -15 -35 -15 Unit dB dB dB dB dB dB dB dB Conditions f=50MHz f=250MHz f=50MHz f=50MHz f=50kHz f=250MHz f=50MHz f=250MHz
9/16
Block diagram BH7659FS
A

B

A

B

A

B



A
B




A
. .
. .

B

A
A


B
B



Fig.8
10/16
Pin descriptions (1/2) BH7659FS Pin No. 1 3 5 7 9 11 Pin name R chroma signal input pin A (RINA) G chroma signal input pin A (GINA) B chroma signal input pin A (BINA) R chroma signal input pin B (RINB) G chroma signal input pin B (GINB) B chroma signal input pin B (BINB) Reference potential Equivalent circuit
VCC
Function
3.5V when selected 0V when not selected
3.7V 10k
2k
RGB signals are switched in two channels. When selected by SW, the DC potential is approximately 3.5V, and when not selected, the DC potential is about 0 V.
VCC
27 29 31
B chroma signal input pin (BOUT) G chroma signal input pin (GOUT) R chroma signal input pin (ROUT) 1.85V
500 2k
Power save function is used when PSH pin is set to high level.
VCC
8
Power save input pin (PSH) Control input pin (CTL) 0V
3.25V
PSH Pin Power save off 1.5V Power save on 3.5V CTL Pin Input A3.5V Input B1.5V
13
50k
11/16
Pin descriptions (2/2) BH7659FS Pin No. 14 15 16 Pin name VD signal input pin A (VDINA) VD signal input pin B (VDINB) VD signal output pin (VDOUT) SDA signal output pin (SDAIO) SDA signal input pin B (SDAIOB) SDA signal input pin A (SDAIOA) SCL signal input pin B (SCLIOB) SCL signal input pin A (SCLIOA) SCL signal output pin (SCLIO) HD signal input pin B (HDINB) HD signal input pin A (HDINA) HD signal output pin (HDOUT) R GND pin (RGND) G GND pin (GGND) B GND pin (BGND) C-MOS supply voltage pin (VDD) B supply voltage pin (BVCC) G supply voltage pin (GVCC) R supply voltage pin (RVCC) 0V
VDD
Reference potential
Equivalent circuit
Function
17 18 19
IN
OUT
0V
20 22 23 24 25 26
VD, HD, SDA, and SCL are switched in two channels. Bidirectional access (I/O) is enabled by the CMOS analog SW.
2
This is the GND pin for the R video SW block. This is the GND pin for the B video SW block. This is the GND pin for the G video SW block , C-MOS SW block. This is the VDD pin for the C-MOS SW block. This is the Vcc pin for the B video SW block This is the Vcc pin for the G video SW block This is the Vcc pin for the R video SW block
4
0V
6
0V
10
5V
28
5V
30
5V
32
5V
12/16
Description of operations BH7659FS 1) Analog SW block R, G, and B chroma signals are switched in two channels. INA is selected by applying a high-level voltage to the CTL pin, and INB is selected by applying a low-level voltage. When the power save pin (pin 8) is set to high level, the current to the SW block's output transistors is reduced to lower the circuit current. Even during low power mode, signal switching can be performed normally as long as there is no drop in frequency characteristics. 2) CMOS analog SW block 2 SDA and SDC signals are switched via an I C bus to handle two channels of HD and VD synchronization signals, and to exchange information bidirectionally between a computer and a monitor. 2 The switching circuits used by this IC handle are configured as CMOS analog switches in order to handle I C BUS signals and to transmit input and output signals bidirectionally. (ON resistance: Ron 200 typ.) Application circuit BH7659FS
Input A R G B VD R4 SDA R4 SCA R4 HD R4 5. 1 5. 1 5. 1 5. 1 R1 R1
C1
+
VCC R2 1 A 2 R B 3 A 4 G B 5 A 6 B B 27 28
+
VCC 32
+
C2
C1 31 Ro
C2 R OUT VCC
C1
+
VCC R2
C2
30
+
C1 29 Ro
C2 G OUT VCC
C1
+
VCC R2
C2 R1
C1 Ro
C2 B OUT HD OUT
Input B R G B VD R4 SDA R4 SCA R4 HD R4 5. 1 R1 5. 1 5. 1 C1
+
C1
+
VCC R2 7
C2 R1 R4 PS:H C1 5. 1 VCC R1
+
26 R3 A
VCC
C3
8
POWER SAVE
25 R3
C2
R2
9
B
24 R3 SCL IO
10 C2 C1 C2 VCC R2 11 A
23 R3
22 R3
12 CTL IN A: H IN B: L
N. C.
N. C.
21
R4 13 C3 R3 A 14 CTL
B
20 R3
A
19
R3
R3
B 15
B 18 R3
VD OUT
R3 16
SDA IO 17 R3
Fig.9
13/16
Reference data
30
BH7659FS
0 -10
BH7659 FS
10 0 GAIN : Gv (dB) -10 -20 -30 -40 -50
BH7659FS
Vcc=5V
Normal Mode
20 Icc (mA)
CROSSTALK : CT(dB)
-20 -30 -40 -50 -60 -70
Vcc=5V
Power Save Normal Mode
10
Power Save
0 0 1 2 3 4 Vcc (V) 5 6 7 8
-80 1 10 100 1000 FREQUENCY: f(MHz)
1
10 100 FREQUENCY : f (MHz)
1000
Fig.10
Circuit current vs. Supply voltage
Fig.11
interchannel crosstalk
Fig.12
Frequency characteristics
Cautions on use (1/2) [BA7657S/F, BH7659FS] 1) Numbers and data in entries are representative design values and are not guaranteed values of the items. 2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics. 3) Absolute maximum ratings If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI. 4) GND potential Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena. 5) Thermal design Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use. 6) Shorts between pins and misinstallation When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND. 7) Operation in strong magnetic fields Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction. [BA7657S/F] 8) External resistance for analog SW block The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible. 9) Polarity of input coupling capacitor When this IC is switched, variation is approximately 3.7 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not. 10) High-frequency characteristics of input coupling capacitor Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 F) in parallel. 11) Layout of target board Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible. 12) Switching speed Since this IC changes the DC voltage of input pins when switching, some time is required for switching. The amount of switching time can be determined by time constants that are in turn determined by the capacity of the coupling capacitor connected to the input pin, and the IC's internal input resistance. When using the recommended input coupling capacitor whose capacitance is 47 F, the switching time is approximately 0.5 seconds.
14/16
Cautions on use (2/2) [BH7659FS] 13) External resistance for analog SW block The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible. 14) Polarity of input coupling capacitor When this IC is switched, variation is approximately 3.5 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not. 15) High frequency characteristics of input coupling capacitor Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 F) in parallel. 16) Layout of target board Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.
Selection of order type
B
A
7
6
5
7
S
E
2
Part. No. BA7657S BA7657F BH7659FS
Tape and Reel information BA7657S None(Tube) BA7657F E2(Embossed carrier tape) BH7659FS E2(Embossed carrier tape)
SOP24

Tape Quantity
15.00.2
24 13
Embossed carrier tape 2000pcs E2
(The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)
7.80.3 5.40.2
1
12
1.80.1
0.150.1
0.11
0.3Min.
Direction of feed
1234
1234
1234
1234
1234
1234
1234
1234
1.27
0.40.1
0.1
(Unit:mm)
Reel
1Pin
Direction of feed
When you order , please order in times the amount of package quantity.
15/16
SDIP24

22.9 0.3 24 13

Container Quantity
6.5 0.3
Tube 1000pcs Direction of products is fixed in a container tube.
Direction of feed
7.62
0.51Min.
1
12
3.4 0.2 3.95 0.3
0.3 0.1
1.778 0.5 0.1 0 15
(Unit:mm)
When you order , please order in times the amount of package quantity.
SSOP-A32

Tape Quantity
13.6 0.2
32 17
Embossed carrier tape 2000pcs E2
(The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)
1.8 0.1 7.8 0.3 5.4 0.2
Direction of feed
0.3Min.
1
16
0.15 0.1 0.1
0.11
1234
1234
1234
1234
1234
1234
1234
1234
0.8
0.36 0.1
Reel
1pin
Direction of feed
Unit:mm)
When you order , please order in times the amount of package quantity.
Catalog No.08T293A '08.8 ROHM (c)


▲Up To Search▲   

 
Price & Availability of BH7659FS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X